IC for Control of Lithium-ion Batteries Charging Monolithic IC MM1433

Outline

This IC is used to control charging of lithium-ion batteries. This one IC incorporates functions for constantcurrent and constant-voltage charging and for precharging, for an overcharge timer, battery temperature detection, and other protective functions. It was developed by adding to the previous MM1332 and 1333 the above-described functions.

Features

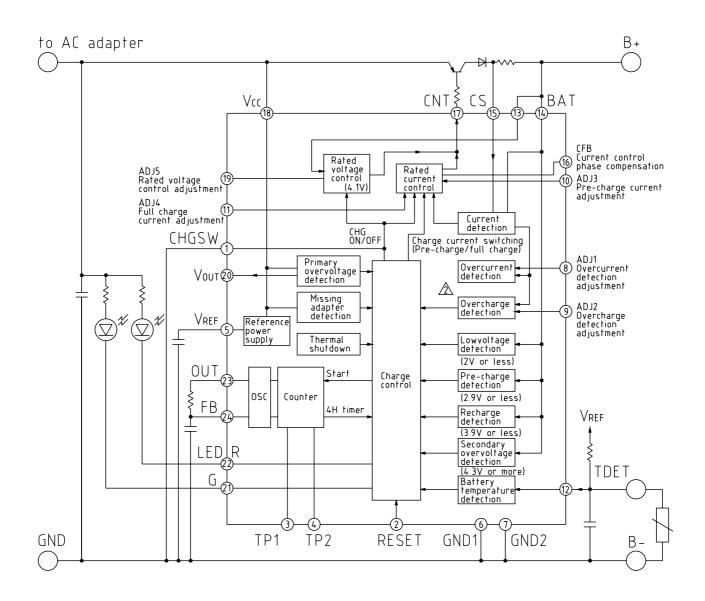
- 1. Charging voltage accuracy
- 2. Consumption current
- 3. Precharge function.
- 4. Recharge function.
- 5. Overcharge timer.
- 6. Battery temperature detection function.
- 7. We can supply type for one and two cells.

Package

TSOP-24A

Applications

IC for control of lithium-ion batteries charging.


Pin Assignment

24 23	∃ ∏ 3 22	21	 20	 19	 18	 17	 16	 15	 14	13
1 2	3	4					9	10	11 □	12
			T	SOI	P-24	А				

1	CHGSW	13	BAT1
2	RESET	14	BAT2
3	TP1	15	CS
4	TP2	16	CFB
5	VREF	17	CNT
6	GND1	18	Vcc
7	GND2	19	ADJ5
8	ADJ1	20	Vout
9	ADJ2	21	LED G
10	ADJ3	22	LED R
11	ADJ4	23	OSC OUT
12	TDET	24	OSC FB-

±30mV/cell. 5mA typ.

Block Diagram

Pin Description

Pin No.	Pin name	I/O	Functions
			Forced charging OFF pin
1	CHGSW	Input	L: Forced charging circuit ON (OFF for reset)
			H: Charging stop is forced
			Logic reset pin
2	RESET	Input	L: Forced charging circuit ON (start)
			H: Forced charging circuit OFF
			Test pin 1
			Pre-charge timer test pin
3	TP1	Input/	Inverts while counting (the middle stage of the several FF stages) and output to
3	111	Output	TP1, to permit monitoring.
			Also, TP1 output signal is inverted again inside the IC and inputs to the next stage
			FF. (Timer setting is done by binary counter.)
		Input/	Test pin 2
4	TP2	Output	Full charge timer test pin
		Output	Same structure as TP1
			Reference power supply output pin
5	VREF	Output	Outputs 1.2V typ. reference voltage. Used for temperature detection reference
			power supply and ADJ1 - ADJ4 adjustment.
6	GND1	Input	Ground pin.
7	GND2	Input	Ground pin.
8	ADJ1	Input	Overcurrent detection adjustment pin
		mput	Set so that overcurrent detection does not function. Pin voltage is 1.16V typ.
			Full charge detection adjustment pin
			Pin voltage is set at 93mV typ. Full charge detection value can be changed by
9	ADJ2	Input	adjusting pin voltage with an external resistor, etc.
			Full charge detection is done by comparing ADJ2 pin voltage and 12dB voltage
			drop value between CS and BAT.
			Pre-charge current adjustment pin
		_	Pin voltage is set at 120mV typ. Pre-charge current can be changed by adjusting
10	ADJ3	Input	pin voltage with an external resistor, etc.
			Pre-charge current control is done by comparing ADJ3 pin voltage and 12dB
			voltage drop value between CS and BAT.
			Full charge current adjustment pin
			Pin voltage is set at 0.89mV typ. Full charge current can be changed by adjusting
	151		pin voltage with an external resistor, etc.
11	ADJ4	Input	Full charge current control is done by comparing ADJ4 pin voltage and 12dB
			voltage drop value between CS and BAT.
			When full charge current is controlled to rated current by an adapter, short ADJ4
			pin and VREF pin so that rated current control does not function in the IC.

Pin No.	Pin name	I/O	Functions
			Temperature detection input pin
12	TDET	Input	Apply potential resistance divided by external resistor and thermistor from
12	IDEI	Input	reference voltage when using. Reset state will exist if TDET pin does not reach
			the specified potential.
13	BAT1	Input	Battery voltage input pins
14	BAT2	Input	Detect battery voltage and control charging.
			Current detection pin
15	CS	Input	Detects current by external resistor (between CS and BAT) voltage drop and
			controls charging current.
			Rated current control phase compensation pin
16	CFB	Input	Oscillation is improved by connecting an external capacitor (around 100pf)
			between CFB and CNT for phase compensation.
17	CNT	Output	Charging control output pin
17	CNI	Output	Controls external PNP-Tr base for rated current rated voltage charging.
18	Vcc	Input	Power supply input pin
			Rated voltage control adjustment pin
19	ADJ5	Input	Allows fine adjustment of rated voltage value. For example, rated voltage value
			rises by around 15mV (at 4.1V typ.) when ADJ5-GND is shorted.
			Overvoltage detection output pin
20	Vout	Output	For Vcc overvoltage input: L
			For Vcc recommended operating voltage: H
21	LED G	Output	LED C control output pin
21	LEDG	Output	NPN-Tr open collector output. Refer to the flow chart for ON/OFF.
22	LED R	Output	LED R control output pin
22		Output	NPN-Tr open collector output. Refer to the flow chart for ON/OFF.
			Oscillator output pin
			Timer setting time changes according to oscillation frequency.
23	OSC OUT	Output	Oscillation frequency is determined by an external resistor (connected between
20	030 001	Output	OSC OUT and OSC FB) and capacitor (connected between OSC FB and GND).
			For example, the full charge timer setting is 4H for external resistor of $130 k \Omega$ and
			capacitor of 0.01µF.
24	OSC FB-	Input	Oscillator inverted input pin

Pin Description (The values below are average values)

Pin No.	Pin name	Equivalent circuit diagram	Pin No.	Pin name	Equivalent circuit diagram	Pin No.	Pin name	Equivalent circuit diagram
1	CHGSW	100k	10	ADJ3	1.2V	17	CNT	
2	RESET	100k	11	ADJ4	1.2V	19	ADJ5	
3	TP1		12	TDET		20	Vout	
4	TP2		13	BAT1		21	LED G	
5	VREF		14	BAT2	Ċ	22	LED R	
8	ADJ1	1.2V	15	CS		23	OSC OUT	
9	ADJ2	1.2V	16	CFB		24	OSC FB-	

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Unit
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+70	°C
Power supply voltage	Vcc max.	-0.3~+15	V
Allowable loss	Pd	250	mW

Recommended Operating Conditions

Item	Symbol	Ratings	Unit
Operating temperature	Topr	-20~+70	°C
Charging control operating voltage	Vopr	2.7~5.9	V

Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=5V)

Item	Symbol	Conditions	Measurement circuit	Min.	Тур.	Max.	Unit
Consumption current	Icc		18		5.0	7.0	mA
Reference voltage	VREF		5		1.207		V
ADP detection voltage L	VADPL	Vcc : H→L	20	2.35	2.45	2.55	V
ADP detection voltage L Hysteresis voltage width	VADPLW		20	50	100	150	mV
ADP detection voltage H	VADPH	Vcc : L→H	20	6.1	6.3	6.5	V
ADP detection voltage H Hysteresis voltage width	VADPHW		20	50	100	150	mV
Impedance for ADP detection output L	ZADPL		20		30		kΩ
BAT pin leak current	Ibat		13, 14, 15			1	μΑ
BAT pin output voltage	VBAT	Ta=0~+50°C	13	4.070	4.100	4.130	V
CNT pin output voltage	VCNT	ICNT=20mA	17			0.5	V
CHGSW pin input current	Isw		1	40	60	80	μΑ
CHGSW pin input voltage H	VSWH	CHGSW : OFF	1	0.6		1.20	V
CHGSW pin input voltage L	VSWL	CHGSW : ON	1			0.25	V
RESET pin input current	Ire		2	40	60	80	μΑ
RESET pin input voltage H	VREH	Charging control circuit: OFF	2	0.6		1.20	V
RESET pin input voltage L	VREL	Charging control circuit: ON	2			0.25	V
Current limit 1	V _{L1}	Quick charge	14, 15	0.20	0.22	0.24	V
Current limit 2	V_{L2}	Pre-charge	14, 15	21	26	31	mV
Full charge detection	V_{F}		14, 15	13	18	23	mV
Low voltage detection voltage	V_{LV}	Vbat : L→H	13	1.90	2.00	2.10	V

Item	Symbol	Conditions	Measurement circuit	Min.	Тур.	Max.	Unit
Low voltage detection voltage Hysteresis voltage width	VLVW		13	25	50	100	mV
Pre-charge detection voltage	V_{P}	$V_{BAT}: L \rightarrow H$	13	2.80	2.90	3.00	V
Pre-charge detection voltage Hysteresis voltage width	VPW		13	25	50	100	mV
Re-charge detection voltage	VR	VBAT:H→L	13	3.85	3.90	3.95	V
Overvoltage detection voltage	Vov	Vbat : L→H	13	4.30	4.35	4.40	V
Battery temperature detection voltage H	VTH	Low temperature 3°C ± 3°C detection	12	0.835	0.860	0.885	V
Battery temperature detection voltage L1	VTL1	High temperature 43°C ± 3°C detection (charging start)	12	0.390	0.413	0.435	V
Battery temperature detection voltage L2	VTL2	High temperature 50°C ± 3°C detection (during charging)	12	0.335	0.353	0.370	V
TDET input bias current	Iт		12		30	150	nA
LED R pin output voltage	VLEDR	ILEDR=10mA	22			0.4	V
LED G pin output voltage	VLEDG	ILEDG=10mA	21			0.4	V
Timer error time	riangle T	Not including external deviation	21, 22	-10		10	%

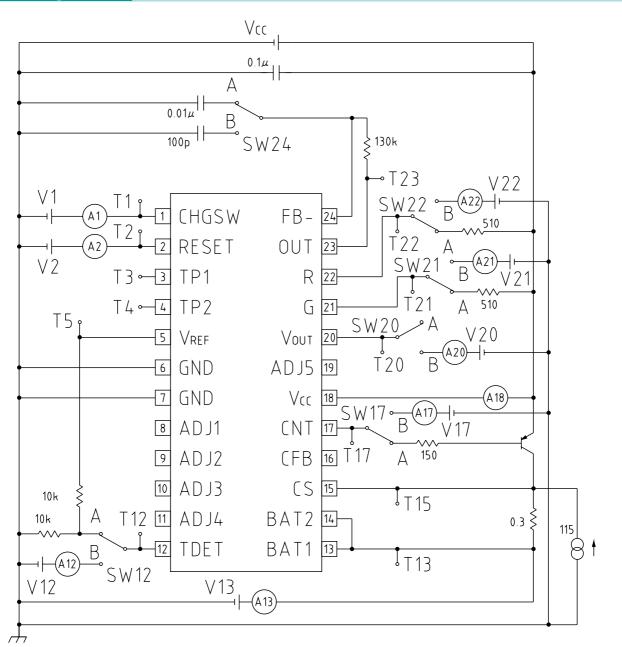
Note 1: Current limits 1 and 2 and full charge detection are specified at current detection resistor voltage drop.

Note 2: If the IC is damaged and control is no longer possible, its safety can not be guaranteed. Please protect with something other than this IC.

- Note 3: Temperature detection is the setting value at B constant 3435 (10KC15-1608 made by Ishizuka Denshi).
- Note 4: Use a capacitor with good temperature characteristics in the oscillator. Capacitor deviation will contribute to timer error.
- Note 5: If the battery overdischarges, charge 1mA for 14 seconds, and if it does not switch to pre-charging during that interval, it means the IC has identified a battery abnormality.

OSC CR Setting Reference Materials

R C	75k	100k	120k	130k	150k	200k
0.0047µ	0.47mS	0.63mS	0.75mS	0.82mS	0.94mS	1.26mS
0.0082µ	0.83mS	1.10mS	1.32mS	1.43mS	1.65mS	2.20mS
0.01µ	1.03mS	1.37mS	1.63mS	1.77mS	2.04mS	2.73mS
0.015µ	1.48mS	1.98mS	2.38mS	2.58mS	2.97mS	3.95mS
0.022µ	2.16mS	2.87mS	3.44mS	3.73mS	4.30mS	5.76mS

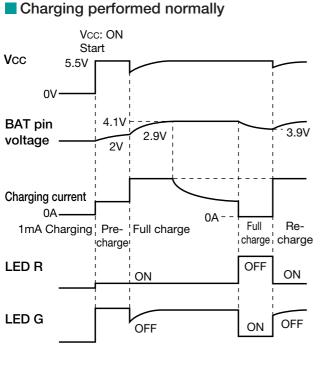

(1) OSCR CR-Oscillation Cycle T Examples

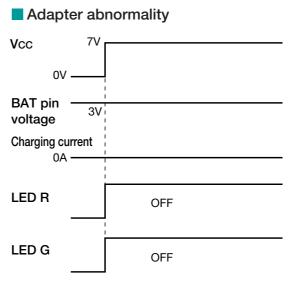
(2) Timer Times

Item	Calculation formula	Examples of calculation (for C = 0.01µ, R = 230k)
Pre-charge timer	$T \times 2^{19}$	15min. 28S
Full charge timer	$T \times 2^{23}$	4h7min.
1mA charge time	$T \times 2^{13}$	14.5S
Full charge detection delay time	$T \times 2^{6}$	0.11S
Overcurrent detection delay time	$T \times 2^8$	0.45S
Overvoltage detection delay time	$T \times 2^8$	0.45S
Re-charge detection delay time	$T \times 2^5$	56.6mS
LED R blinking cycle	$T \times 2^{10}$	1.8S

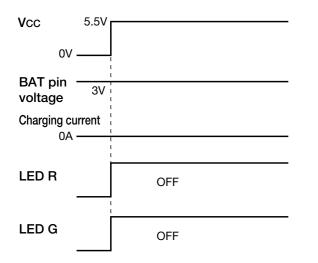
Note: T: OSC oscillation cycle

Measuring Circuit

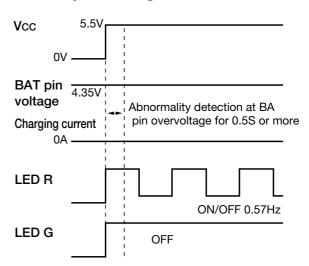


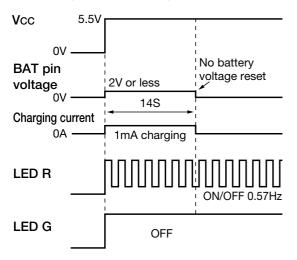

Measurement Procedures (Except whe SW12, 17, 2

(Except where noted otherwise, Ta = 25° C, Vcc=5V, V1=V2=0V, V13=4.2V, SW12, 17, 20, 22, 24:A, I15=0mA Timers are not in time up state.)

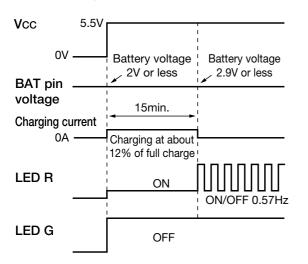

Item	Measurement Procedures
Consumption current	V1 = 1.2V. Measure A18 current value Icc.
Reference voltage	Measure T5 potential VREF.
ADP detection voltage L	Gradually lower Vcc from 5V; Vcc – potential is VADPL when T20 potential drops below 0.5V.
ADP detection voltage L	Gradually lower Vcc - from 2V. Vcc - potential is VADPL2 when T20 potential
Hysteresis voltage width	goes over $V_{CC} - 0.5V$. Vadplw = Vadlp ₂ - Vadpl
ADP detection voltage H	Gradually increase Vcc from 5V. Vcc potential is VADPH when T20 potential drops below 0.5V.
ADP detection voltage H	Gradually lower Vcc from 7V. Vcc potential is VADPH2 when T20 potential
Hysteresis voltage width	goes over Vcc – 0.5V. Vadphw = Vadph – Vadph2
Impedance for ADP Ldetection output	Vcc = 7V, SW20: B, V20 – 0.5V, impedance between T20-GND is ZADPL.
BAT pin leak current	Vcc = 0V, SW17: B, V17 = 0V. Measure A13 current value IBAT.
BAT pin output voltage	Gradually lower V13 from 3.5V. T13 potential is VBAT when T15 – T13 potential difference falls to less than 20mV.
CNT pin output voltage	V13 = 3.5V, SW17: B. Gradually raise V17 from 0V. T17 potential is VCNT when A17 current value 20mA.
CHGSW pin input current	Measure A1 current value Isw.
CHGSW pin input voltage H	V13 = 3.5V. Raise V1 from 0V to 1.2V. CHGSW: ON when A13 is more than
CHGSW pin input voltage L	500mA. CHGSW: OFF when A13 is less than 1mA. Measure Vsw.
RESET pin input current	Measure A2 current value IRE.
RESET pin input voltage H	V13 = 3.5V. Raise V2 from 0V to 1.2V. Charging control circuit: ON when A13 is more
RESET pin input voltage L	than 500mA. Charging control circuit: OFF when A13 is less than 1mA. Measure VRE.
Current limit 1	V13 = $3.5V$. T15-T13 potential difference is V _{L1} .
Current limit 2	V13 = 3.5V. T15-T13 potential difference is V_{L2} .
Full charge detection	SW24: B, I15 = 100mA. Gradually reduce I15 current value after reset. T15 –
	T13 potential difference is VF when T21 potential goes under 0.5V. Gradually raise V13 from 0V. T13 potential is VLV when A13 current value goes
Low voltage detection voltage	over 50mA.
Low voltage detection voltage	Gradually lower V13 from 2.5V. T13 potential is VLV2 when A13 current value
Hysteresis voltage width	goes over 10mA. $V_{LVW} = V_{LV} - V_{LV2}$
	Gradually raise V13 from 2.5V. T13 potential is VP when A13 current value
Pre-charge detection voltage	goes over 500mA.
Pre-charge detection voltage	Gradually lower V13 from 3.5V. T13 potential is VP2 when A13 current value
Hysteresis voltage width	goes under 150mA. VPW = VP= VP2
Re-charge detection voltage	Wait about 1S at V13 = 4.2V; in full charge detection state, gradually lower V13 potential to lower T21 potential to under 0.5V. T13 potential is V_R when T21
Overvoltage detection voltage	potential is more than Vcc – 0.5V. Gradually raise V13 from 4V. T13 potential is Vov when T22 potential starts to repeat HI/LOW.
Battery temperature	V13 = 3.5V, SW12: B. Gradually raise V12 from 0.6V. T12 potential is VTH
detection voltage H	when A13 current value goes under 1mA.
Battery temperature	V13 = 3.5V, SW12: B. Gradually raise V12 from 0V. T12 potential is VTL1 when
detection voltage L1	A13 current value goes over 500mA.
Battery temperature	V13 = $3.5V$, SW12: B. Gradually raise V12 from 0.6V. T12 potential is VTL2
detection voltage L2	when A13 current value goes over 1mA.
TDET input bias current	SW12: B, V12 = 0V. Measure A12 current value IT.
	V13 = 3.5V, SW22: B. Gradually raise V22 from 0V. T22 potential is VLEDR
LED R pin output voltage	when A22 current value is 10mA.
	Wait about 1S at V13 = 4.2V; in full charge detection state, make T21 potential
LED G pin output voltage	0.5V or less. Next at SW21: B, gradually raise V21 from 0V. T21 potential is
	VLEDG when A21 current value is 10mA.

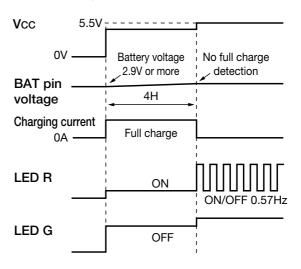
Timing Chart



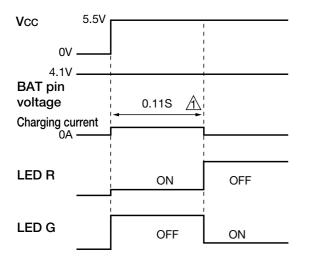

Power supply setting error (temperature detection pin open)

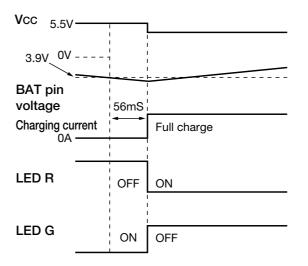
Battery overcharge

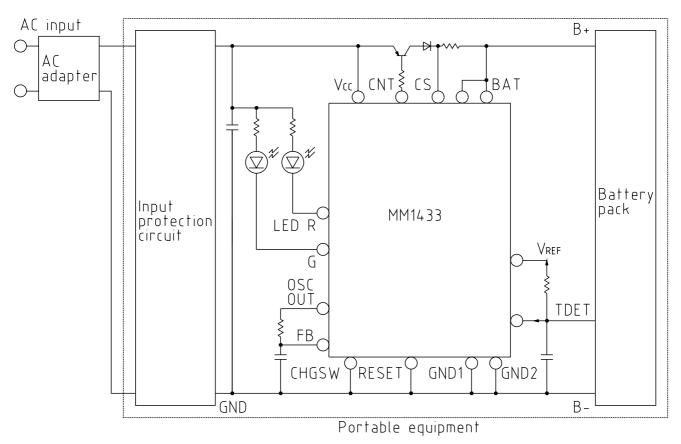

Battery overdischarge

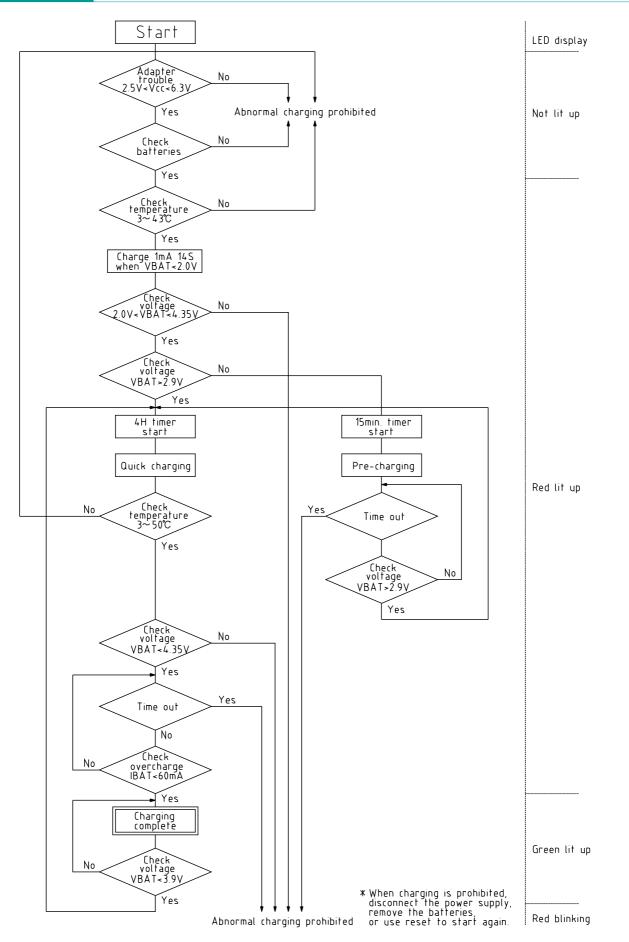

Overcurrent detection

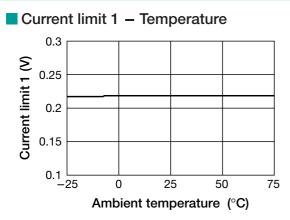
Overcurrent detection does not function

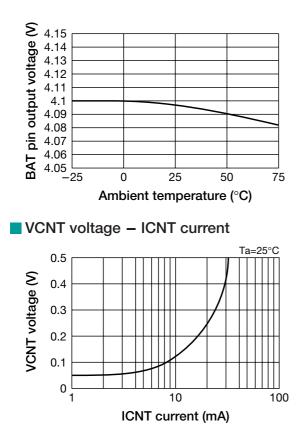

Pre-charge time up

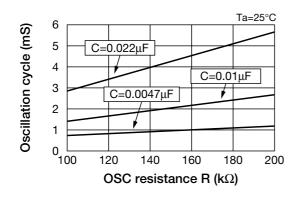

Full charge time up

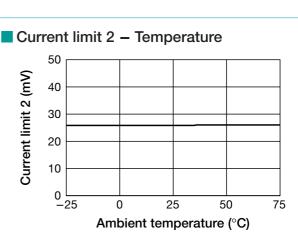

Battery full charge


Re-charge detection

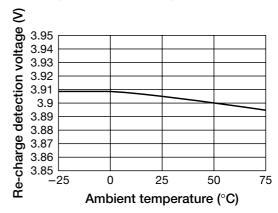

Application Circuit


Flow Chart

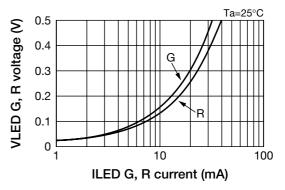

Characteristics

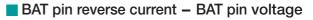


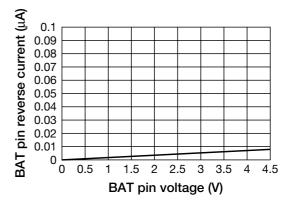
BAT pin output voltage – Temperature



OSC oscillation cycle – CR






Re-charge detection voltage – Temperature

VLED G, R voltage - ILED G, R current

